首页> 外文期刊>IEEE Transactions on Signal Processing >Asymptotic maximum likelihood estimator performance for chaotic signals in noise
【24h】

Asymptotic maximum likelihood estimator performance for chaotic signals in noise

机译:噪声中混沌信号的渐近最大似然估计性能

获取原文
获取原文并翻译 | 示例

摘要

The performance of the maximum likelihood estimator for a 1-D chaotic signal in white Gaussian noise is derived. It is found that the estimator is inconsistent and therefore the usual asymptotic distribution (large data record length) is invalid. However, for high signal-to-noise ratios (SNRs), the maximum likelihood estimator is asymptotically unbiased and attains the Cramer-Rao lower bound.
机译:推导了高斯白噪声中一维混沌信号的最大似然估计器的性能。发现估计量不一致,因此通常的渐近分布(大数据记录长度)无效。但是,对于高信噪比(SNR),最大似然估计量是渐近无偏的,并达到Cramer-Rao下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号