首页> 外文期刊>IEEE Transactions on Signal Processing >On the robustness of parameter estimation of superimposed signals by dynamic programming
【24h】

On the robustness of parameter estimation of superimposed signals by dynamic programming

机译:动态规划的叠加信号参数估计的鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

We analyze a recently proposed dynamic programming algorithm (REDP) for maximum likelihood (ML) parameter estimation of superimposed signals in noise. We show that it degrades gracefully with deviations from the key assumption of a limited interaction signal model (LISMO), providing exact estimates when the LISMO assumption holds exactly. In particular, we show that the deviations of the REDP estimates from the exact ML are continuous in the deviation of the signal model from the LISMO assumption. These deviations of the REDP estimates from the MLE are further quantified by a comparison to an ML algorithm with an exhaustive multidimensional search on a lattice in parameter space. We derive an explicit expression for the lattice spacing for which the two algorithms have equivalent optimization performance, which can be used to assess the robustness of REDP to deviations from the LISMO assumption. The values of this equivalent lattice spacing are found to be small for a classical example of superimposed complex exponentials in noise, confirming the robustness of REDP for this application.
机译:我们分析了最近提出的动态编程算法(REDP),用于对噪声中的叠加信号进行最大似然(ML)参数估计。我们表明,随着与有限交互信号模型(LISMO)的关键假设的偏离,它会优雅地退化,并在LISMO假设完全成立时提供精确的估计。特别是,我们显示出REDP估计值与精确ML的偏差在信号模型与LISMO假设的偏差中是连续的。 REDP估计值与MLE的这些偏差可通过与ML算法进行比较来进一步量化,其中ML算法对参数空间中的晶格进行了详尽的多维搜索。我们为晶格间距导出了一个明确的表达式,对于这两个算法,它们具有同等的优化性能,可用于评估REDP对偏离LISMO假设的鲁棒性。对于噪声中叠加的复杂指数的经典示例,发现该等效晶格间距的值很小,这证实了REDP对于该应用的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号