首页> 外文期刊>IEEE Transactions on Signal Processing >Maximum likelihood parameter estimation of superimposed signals by dynamic programming
【24h】

Maximum likelihood parameter estimation of superimposed signals by dynamic programming

机译:动态编程对叠加信号的最大似然参数估计

获取原文
获取原文并翻译 | 示例

摘要

The problem of fitting a model composed of a number of superimposed signals to noisy data using the maximum likelihood criterion is considered. It is shown, using the Cramer-Rao bound for the estimation accuracy, that in many instances, useful models for the composite signal can be restricted without loss of generality to component signals that directly interact only with one or two of their closest neighbors in parameter space. It is shown that for such models, the global extremum of the criterion can be found efficiently by dynamic programming. The computation requirements are linear in the number of signals, rather than exponential as in the case of exhaustive search. The technique applies for arbitrary sampling of the signals. The dynamic programming method is easily adapted to determining the number of signals as well, as is demonstrated using the minimum description length principle. Computer simulation results are given for several examples.
机译:考虑了使用最大似然准则将由多个叠加信号组成的模型拟合到噪声数据的问题。使用Cramer-Rao边界表示估计精度表明,在许多情况下,可以将复合信号的有用模型限制在不直接影响仅与参数中最接近的一个或两个邻居直接交互的分量信号的通用性的情况下。空间。结果表明,对于此类模型,可以通过动态编程有效地找到准则的整体极值。计算要求在信号数量上是线性的,而不是像穷举搜索那样是指数级的。该技术适用于信号的任意采样。动态编程方法也很容易适用于确定信号数量,如使用最小描述长度原理所证明的。给出了几个实例的计算机仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号