首页> 外文期刊>IEEE Transactions on Signal Processing >Asymptotic analysis of stochastic gradient-based adaptive filtering algorithms with general cost functions
【24h】

Asymptotic analysis of stochastic gradient-based adaptive filtering algorithms with general cost functions

机译:具有一般成本函数的基于随机梯度的自适应滤波算法的渐近分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an analysis of stochastic gradient-based adaptive algorithms with general cost functions. The analysis holds under mild assumptions on the inputs and the cost function. The method of analysis is based on an asymptotic analysis of fixed stepsize adaptive algorithms and gives almost sure results regarding the behavior of the parameter estimates, whereas previous stochastic analyses typically considered mean and mean square behavior. The parameter estimates are shown to enter a small neighborhood about the optimum value and remain there for a finite length of time. Furthermore, almost sure exponential bounds are given for the rate of convergence of the parameter estimates. The asymptotic distribution of the parameter estimates is shown to be Gaussian with mean equal to the optimum value and covariance matrix that depends on the input statistics. Specific adaptive algorithms that fall under the framework of this paper are signed error least mean square (LMS), dual sign LMS, quantized state LMS, least mean fourth, dead zone algorithms, momentum algorithms, and leaky LMS.
机译:本文对具有一般成本函数的基于随机梯度的自适应算法进行了分析。该分析是在对投入和成本函数的温和假设下进行的。该分析方法基于固定步长自适应算法的渐近分析,并给出关于参数估计值行为的几乎确定的结果,而以前的随机分析通常考虑均值和均方行为。参数估计值显示进入最佳值附近的较小邻域,并在有限的时间范围内保持在那里。此外,对于参数估计的收敛速度,几乎可以确定指数范围。参数估计值的渐近分布显示为高斯分布,均值等于最佳值,并且协方差矩阵取决于输入统计数据。属于本文框架的特定自适应算法是有符号误差最小均方(LMS),双符号LMS,量化状态LMS,最小均四,死区算法,动量算法和泄漏LMS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号