首页> 外文期刊>IEEE signal processing letters >A Globally Convergent Stochastic Pairwise Conjugate Gradient-Based Algorithm for Adaptive Filtering
【24h】

A Globally Convergent Stochastic Pairwise Conjugate Gradient-Based Algorithm for Adaptive Filtering

机译:基于全局收敛的随机成对共轭梯度的自适应滤波算法

获取原文
获取原文并翻译 | 示例

摘要

It is well known that, for the deterministic optimization problem, the method of conjugate gradient has superior convergence rates compared to ordinary gradient methods. For quadratic problems, the conjugate gradient method has finite termination property which makes it one of the most favorable iterative methods. However, the fast convergence and the finite termination property can easily break down when the function to be optimized is noisy since conjugacy among search directions can no longer be maintained over the course of the iterations. In this letter, a conjugation procedure is applied in an adaptive filtering algorithm, where, instead of producing a set of conjugate search directions, only pairwise conjugation of gradients is produced during each system update. Simulations show that the algorithm provides superior convergence compared to the stochastic gradient descent algorithm, and comparable to existing conjugate gradient-based adaptive filtering algorithms, but at a lower computational cost.
机译:众所周知,对于确定性优化问题,共轭梯度法比普通梯度法具有更高的收敛速度。对于二次问题,共轭梯度法具有有限的终止性质,这使其成为最有利的迭代方法之一。但是,当要优化的函数嘈杂时,快速收敛和有限终止属性很容易崩溃,因为在迭代过程中将不再保持搜索方向之间的共轭。在这封信中,在自适应滤波算法中应用了共轭过程,在该算法中,不是生成一组共轭搜索方向,而是在每次系统更新期间仅生成梯度的成对共轭。仿真表明,与随机梯度下降算法相比,该算法可提供优异的收敛性,并且与现有的基于共轭梯度的自适应滤波算法相当,但计算成本较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号