首页> 外文期刊>IEEE Transactions on Signal Processing >Nonlinear filtering methods for harmonic retrieval and model order selection in Gaussian and non-Gaussian noise
【24h】

Nonlinear filtering methods for harmonic retrieval and model order selection in Gaussian and non-Gaussian noise

机译:高斯和非高斯噪声中用于谐波检索和模型阶数选择的非线性滤波方法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of high-resolution parameter estimation (harmonic retrieval) and model-order selection for superimposed sinusoids. The harmonic retrieval problem is analyzed using a nonlinear parameter estimation approach. Estimation is performed using several nonlinear estimators with signals embedded in white and colored Gaussian noise. Simulation results demonstrate that the nonlinear filters perform close to the Cramer-Rao bound. Model order selection is performed in Gaussian and non-Gaussian noise. The problem is formulated using a multiple hypothesis testing approach with assumed known a priori probabilities for each hypothesis. Parameter estimation is performed using the extended Kalman filter when the noise is Gaussian. The extended high-order filter (EHOF) is implemented in non-Gaussian noise. Simulation results demonstrate excellent performance in selecting the correct model order and estimating the signal parameters.
机译:本文解决了叠加正弦波的高分辨率参数估计(谐波检索)和模型顺序选择的问题。使用非线性参数估计方法分析谐波检索问题。使用几种非线性估计器执行估计,这些信号的信号嵌入白色和彩色高斯噪声中。仿真结果表明,非线性滤波器的性能接近Cramer-Rao界。模型顺序选择是在高斯和非高斯噪声中执行的。该问题是使用多重假设检验方法用每个假设的假定已知先验概率来表述的。当噪声为高斯时,使用扩展的卡尔曼滤波器执行参数估计。扩展高阶滤波器(EHOF)在非高斯噪声中实现。仿真结果证明了在选择正确的模型顺序和估计信号参数方面的出色性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号