首页> 外文期刊>IEEE Transactions on Signal Processing >The hyperbolic class of quadratic time-frequency representations. II. Subclasses, intersection with the affine and power classes, regularity, and unitarity
【24h】

The hyperbolic class of quadratic time-frequency representations. II. Subclasses, intersection with the affine and power classes, regularity, and unitarity

机译:二次时频表示的双曲类。二。子类,与仿射和幂类的交集,规则性和统一性

获取原文
获取原文并翻译 | 示例

摘要

For pt.I see ibid., vol.41, p.3425-444 (1993). Part I introduced the hyperbolic class (HC) of quadratic/bilinear time-frequency representations (QTFRs). The present paper defines and studies four subclasses of the HC: (1) The focalized-kernel subclass of the HC is related to a time-frequency concentration property of QTFRs. It is analogous to the localized-kernel subclass of the affine QTFR class. (2) The affine subclass of the HC (affine HC) consists of all HC QTFRs that satisfy the conventional time-shift covariance property. It forms the intersection of the HC with the affine QTFR class. (3) The power subclasses of the HC consist of all HC QTFRs that satisfy a "power time-shift" covariance property. They form the intersection of the HC with the recently introduced power classes. (4) The power-warp subclass of the HC consists of all HC QTFRs that satisfy a covariance to power-law frequency warpings. It is the HC counterpart of the shift-scale covariant subclass of Cohen's class. All of these subclasses are characterized by 1D kernel functions. The affine HC is contained in both the localized kernel hyperbolic subclass and the localized-kernel affine subclass and that any affine HC QTFR can be derived from the Bertrand unitary Po-distribution by a convolution. We furthermore consider the properties of regularity and unitarity in the HC. The calculus of inverse kernels is developed, and important implications of regularity and unitarity are summarized. The results comprise a general method for least-squares signal synthesis and new relations for the Altes-Marinovich Q-distribution.
机译:对于pt,我参见同上,第41卷,第3425-444页(1993)。第一部分介绍了二次/双线性时频表示(QTFR)的双曲类(HC)。本文定义并研究了HC的四个子类:(1)HC的聚焦内核子类与QTFRs的时频集中特性有关。它类似于仿射QTFR类的本地化内核子类。 (2)HC的仿射子类(仿射HC)由满足常规时移协方差特性的所有HC QTFR组成。它构成了HC与仿射QTFR类的交集。 (3)HC的功率子类由满足“功率时移”协方差特性的所有HC QTFR组成。它们构成了HC与最近推出的功率等级的交集。 (4)HC的功率翘曲子类由满足幂律频率翘曲协方差的所有HC QTFR组成。它是Cohen类的班级尺度协变子类的HC对应物。所有这些子类都具有一维内核函数的特征。仿射HC包含在局部核双曲子类和局部核仿射子类中,并且任何仿射HC QTFR均可通过卷积从Bertrand unit Po分布派生。我们还考虑了HC中规则性和统一性的性质。提出了反核的演算,并总结了正则性和统一性的重要含义。结果包括最小二乘信号合成的一般方法和Altes-Marinovich Q分布的新关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号