首页> 外文期刊>International Journal of Number Theory >AN ARITHMETICAL INVARIANT OF ORBITS OF AFFINE ACTIONS AND ITS APPLICATION TO SIMILARITY CLASSES OF QUADRATIC SPACES
【24h】

AN ARITHMETICAL INVARIANT OF ORBITS OF AFFINE ACTIONS AND ITS APPLICATION TO SIMILARITY CLASSES OF QUADRATIC SPACES

机译:仿射作用力的算术不变性及其在二次空间相似类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Given an action of an affine algebraic group on an affine variety and a relatively invariant regular function, all defined over the ring of integers of a number field and having suitable additional properties, an invariant of the rational orbits of the Action is defined. This invariant, the reduced replete Steinitz class, takes its values in the reduced replete class group of the number field. The general framework is then applied to obtain an invariant of similarity classes of non-degenerate quadratic spaces of even rank. The invariant is related to more familiar invariants. It is shown that if the similarity classes are weighted by the volume of an associated automorphism group then their reduced replete Steinitz classes are asymptotically uniformly distributed with respect to a natural parameter.
机译:给定仿射代数群对仿射变体的作用和相对不变的正则函数(均定义在一个数域的整数环上并具有合适的附加性质),则定义该作用的有理轨道不变。此不变量,即减少的补充Steinitz类,将其值作为数字字段的减少的补充类组的值。然后将通用框架应用于获得偶数秩的非退化二次空间的相似性类的不变性。该不变量与更熟悉的不变量相关。结果表明,如果相似类通过相关同构群的体积加权,则它们的减少的大量Steinitz类相对于自然参数渐近均匀地分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号