首页> 外文期刊>IEEE Transactions on Signal Processing >Identification of hidden Markov models for ion channel currents. II. State-dependent excess noise
【24h】

Identification of hidden Markov models for ion channel currents. II. State-dependent excess noise

机译:识别离子通道电流的隐马尔可夫模型。二。取决于状态的过量噪声

获取原文
获取原文并翻译 | 示例

摘要

For pt.I see ibid., vol.46, no.7, p.1901 (1998). Hidden Markov modeling (HMM) techniques have been applied in the past few years to characterize single ion channel current events at low signal-to-noise ratios (SNRs). In this paper, an adaptation of the forward-backward procedure and Baum-Welch algorithm is presented to model ion channel kinetics under conditions of correlated and state-dependent excess noise like that observed in patch-clamp recordings. An autoregressive with additive nonstationary (ARANS) noise model is introduced to model the experimentally observed noise, and an algorithm called the Baum-Welch weighted least squares (BW-WLS) procedure is presented to re-estimate the noise model parameters along with the parameters of the underlying HMM. The performance of the algorithm is demonstrated with simulated data.
机译:关于pt,见同上,第46卷,第7期,第1901页(1998年)。隐马尔可夫建模(HMM)技术在过去的几年中已被应用来表征低信噪比(SNR)下的单个离子通道电流事件。在本文中,提出了向前-向后程序和Baum-Welch算法的改编,以在相关和状态相关的过量噪声(如在膜片钳记录中观察到)的条件下对离子通道动力学进行建模。引入自回归加非平稳(ARANS)噪声模型来对实验观察到的噪声进行建模,并提出了一种称为Baum-Welch加权最小二乘(BW-WLS)的算法来重新估计噪声模型参数以及这些参数基础HMM的数量。仿真数据证明了该算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号