首页> 外文期刊>IEEE Transactions on Signal Processing >Identification of hidden Markov models for ion channel currents. I. Colored background noise
【24h】

Identification of hidden Markov models for ion channel currents. I. Colored background noise

机译:识别离子通道电流的隐马尔可夫模型。一,彩色背景噪音

获取原文
获取原文并翻译 | 示例

摘要

Signal processing based on hidden Markov models (HMM's) has been applied recently to the characterization of single ion channel currents as recorded with the patch clamp technique from living cells. The estimation of HMM parameters using the traditional forward-backward and Baum-Welch algorithms can be performed at signal-to-noise ratios (SNR's) that are too low for conventional analysis; however, the application of these algorithms relies on the assumption that the background noise is white. In this paper, the observed single channel current is modeled as a vector hidden Markov process. An extension of the forward-backward and Baum-Welch algorithms is described to model ion channel kinetics under conditions of colored noise like that seen in patch clamp recordings. Using simulated data, we demonstrate that the traditional algorithms result in biased estimates and that the vector HMM approach provides unbiased estimates of the parameters of the underlying hidden Markov scheme.
机译:最近,基于隐马尔可夫模型(HMM)的信号处理已被应用到单离子通道电流的表征中,这是通过膜片钳技术从活细胞中记录的。使用传统的前向-后向和Baum-Welch算法对HMM参数的估计可以在信噪比(SNR)太低的情况下进行,而信噪比对于常规分析而言太低了。但是,这些算法的应用依赖于背景噪声为白色的假设。在本文中,将观察到的单通道电流建模为矢量隐马尔可夫过程。描述了向前-向后和Baum-Welch算法的扩展,以在色噪声条件下(如在膜片钳记录中看到的那样)对离子通道动力学建模。使用模拟数据,我们证明了传统算法会导致偏差估计,并且向量HMM方法提供了基础隐马尔可夫方案的参数的无偏差估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号