首页> 外文期刊>IEEE Transactions on Signal Processing >Pseudo-randomly generated estimator banks: a new tool for improving the threshold performance of direction finding
【24h】

Pseudo-randomly generated estimator banks: a new tool for improving the threshold performance of direction finding

机译:伪随机生成的估算器库:一种新的工具,用于提高测向的阈值性能

获取原文
获取原文并翻译 | 示例

摘要

A new powerful tool for improving the threshold performance of direction finding is considered. The main idea of our approach is to reduce the number of outliers in the DOA estimates using a previously proposed joint estimation strategy (JES). For this purpose, multiple different DOA estimators are calculated in a parallel manner for the same batch of data (i.e. for a single data record). Employing these estimators simultaneously, the JES improves the threshold performance because it removes outliers and exploits only "successful" estimators that are sorted out using a hypothesis testing procedure. We consider an efficient modification of the JES with application to the pseudo-randomly generated eigenstructure estimator banks based on secondand higher order statistics. Weighted MUSIC estimators based on the covariance and contracted quadricovariance matrices are chosen as appropriate underlying techniques for the second- and fourth-order estimator banks, respectively. Computer simulations with uncorrelated sources verify the dramatic improvements of threshold performance as compared with the conventional second- and fourth-order MUSIC algorithms. Simulations also show that in the second-order case, the threshold performance of our technique is close to that of the WSF method and stochastic/deterministic ML methods, which are known today as the most powerful (in the sense of estimation performance) and, at the same time, as the most computationally expensive DOA estimation techniques. The computational cost of our algorithm is much lower than that of the WSF and ML techniques because no multidimensional optimization is required.
机译:考虑了一种新的功能强大的工具,用于改善测向的阈值性能。我们方法的主要思想是使用先前提出的联合估计策略(JES)减少DOA估计中的异常值。为此,针对同一批数据(即针对单个数据记录)以并行方式计算多个不同的DOA估计量。同时使用这些估计器,JES改进了阈值性能,因为它消除了异常值,仅利用了使用假设检验程序筛选出的“成功”估计器。我们考虑对JES进行有效的修改,并将其应用于基于二阶和更高阶统计量的伪随机生成的本征结构估计器库。选择基于协方差和收缩二次方差矩阵的加权MUSIC估计器分别作为二阶和四阶估计器库的基础技术。与传统的二阶和四阶MUSIC算法相比,具有不相关源的计算机仿真证明了阈值性能的显着提高。仿真还表明,在二阶情况下,我们的技术的阈值性能接近WSF方法和随机/确定性ML方法的阈值性能,而WSF方法和随机/确定性ML方法在当今被认为是最强大的(就估计性能而言),并且同时,作为计算上最昂贵的DOA估计技术。我们的算法的计算成本比WSF和ML技术的计算成本低得多,因为不需要多维优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号