首页> 外文期刊>IEEE Transactions on Signal Processing >Robust recursive time series modeling based on an AR model excited by a t-distribution process
【24h】

Robust recursive time series modeling based on an AR model excited by a t-distribution process

机译:基于由t分布过程激发的AR模型的鲁棒递归时间序列建模

获取原文
获取原文并翻译 | 示例

摘要

In this correspondence, a new robust recursive spectral estimation based on an AR model is proposed. The optimal coefficients are selected by assuming that the excitation signal has a t-distribution t(/spl alpha/) with /spl alpha/ degrees of freedom. With /spl alpha/=/spl infin/, we get the RLS method. Simulation results show that the obtained estimates using the proposed method with small /spl alpha/ are more efficient, and the standard deviation (SD) of the estimation results is smaller and more accurate than that with large /spl alpha/. The proposed estimator with small /spl alpha/ is also more efficient and more accurate than the recursive method based on Huber's M estimate. Two approaches are used, i.e., the infinite memory and the exponentially weighted approaches.
机译:在这种对应关系下,提出了一种新的基于AR模型的鲁棒递归谱估计方法。通过假设激励信号具有自由度为/ spl alpha /的t分布t(/ spl alpha /)来选择最佳系数。使用/ spl alpha / = / spl infin /,我们得到RLS方法。仿真结果表明,与小/ spl alpha /相比,使用所提出的方法在较小的/ spl alpha /下获得的估计更有效,并且估计结果的标准偏差(SD)更小且更准确。与基于Huber's M估计的递归方法相比,建议的/ spl alpha /小的估计器也更有效,更准确。使用了两种方法,即无限存储器和指数加权方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号