首页> 外文期刊>IEEE Transactions on Signal Processing >Stochastic analysis of gradient adaptive identification of nonlinear systems with memory for Gaussian data and noisy input and output measurements
【24h】

Stochastic analysis of gradient adaptive identification of nonlinear systems with memory for Gaussian data and noisy input and output measurements

机译:具有高斯数据和噪声输入和输出测量记忆的非线性系统梯度自适应辨识的随机分析。

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the statistical behavior of two gradient search adaptive algorithms for identifying an unknown nonlinear system comprised of a discrete-time linear system H followed by a zero-memory nonlinearity g(/spl middot/). The input and output of the unknown system are corrupted by additive independent noises. Gaussian models are used for all inputs. Two competing adaptation schemes are analyzed. The first is a sequential adaptation scheme where the LMS algorithm is first used to estimate the linear portion of the unknown system. The LMS algorithm is able to identify the linear portion of the unknown system to within a scale factor. The weights are then frozen at the end of the first adaptation phase. Recursions are derived for the mean and fluctuation behavior of the LMS algorithm, which are in excellent agreement with Monte Carlo simulations. When the nonlinearity is modeled by a scaled error function, the second part of the sequential gradient identification scheme is shown to correctly learn the scale factor and the error function scale factor. Mean recursions for the scale factors show good agreement with Monte Carlo simulations. For slow learning, the stationary points of the gradient algorithm closely agree with the stationary points of the theoretical recursions. The second adaptive scheme simultaneously learns both the linear and nonlinear portions of the unknown channel. The mean recursions for the linear and nonlinear portions show good agreement with Monte Carlo simulations for slow learning. The stationary points of the gradient algorithm also agree with the stationary points of the theoretical recursions.
机译:本文研究了两种梯度搜索自适应算法的统计行为,这些算法用于识别由离散时间线性系统H和零内存非线性g(/ spl middot /)组成的未知非线性系统。未知系统的输入和输出被附加的独立噪声破坏。高斯模型用于所有输入。分析了两种竞争的适应方案。第一种是顺序自适应方案,其中首先使用LMS算法估计未知系统的线性部分。 LMS算法能够在比例因子内识别未知系统的线性部分。然后在第一适应阶段结束时冻结权重。得出了LMS算法的均值和波动行为的递归,这与蒙特卡洛模拟非常吻合。当通过比例误差函数对非线性进行建模时,将显示顺序梯度识别方案的第二部分,以正确学习比例因子和误差函数比例因子。比例因子的平均递归与蒙特卡洛模拟显示出很好的一致性。对于慢速学习,梯度算法的固定点与理论递归的固定点非常一致。第二种自适应方案同时学习未知信道的线性和非线性部分。线性和非线性部分的平均递归与用于缓慢学习的蒙特卡洛模拟显示出很好的一致性。梯度算法的固定点也与理论递归的固定点一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号