首页> 外文期刊>IEEE Transactions on Signal Processing >Temporal BYY learning for state space approach, hidden Markov model, and blind source separation
【24h】

Temporal BYY learning for state space approach, hidden Markov model, and blind source separation

机译:状态空间方法,隐马尔可夫模型和盲源分离的时间BYY学习

获取原文
获取原文并翻译 | 示例

摘要

The temporal Bayesian Yang-Yang (TBYY) learning has been presented for signal modeling in a general state space approach, which provides not only a unified point of view on the Kalman filter, hidden Markov model (HMM), independent component analysis (ICA), and blind source separation (BSS) with extensions, but also further advances on these studies, including a higher order HMM, independent HMM for binary BSS, temporal ICA (TICA), and temporal factor analysis for real BSS without and with noise. Adaptive algorithms are developed for implementation and criteria are provided for selecting an appropriate number of states or sources. Moreover, theorems are given on the conditions for source separation by linear and nonlinear TICA. Particularly, it has been shown that not only non-Gaussian but also Gaussian sources can also be separated by TICA via exploring temporal dependence. Experiments are also demonstrated.
机译:已经提出了时态贝叶斯杨阳(TBYY)学习,用于在一般状态空间方法中进行信号建模,该方法不仅提供了有关卡尔曼滤波器,隐马尔可夫模型(HMM),独立分量分析(ICA)的统一观点以及具有扩展功能的盲源分离(BSS),但在这些研究上也取得了进一步的进展,包括更高阶的HMM,用于二进制BSS的独立HMM,时间ICA(TICA)以及用于有噪声和无噪声的实际BSS的时间因子分析。开发了用于实施的自适应算法,并提供了用于选择适当数量的状态或源的标准。此外,在通过线性和非线性TICA进行源分离的条件下给出了定理。特别地,已经显示出通过探索时间依赖性,不仅非高斯源,而且高斯源也可以由TICA分离。实验也得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号