首页> 外文期刊>IEEE Transactions on Signal Processing >Design of Probabilistic Boolean Networks Under the Requirement of Contextual Data Consistency
【24h】

Design of Probabilistic Boolean Networks Under the Requirement of Contextual Data Consistency

机译:上下文数据一致性要求下的概率布尔网络设计

获取原文
获取原文并翻译 | 示例

摘要

A key issue of genomic signal processing is the design of gene regulatory networks. A probabilistic Boolean network (PBN) is composed of a family of Boolean networks. It stochastically switches between its constituent networks (contexts). For network design, connectivity and transition rules must be inferred from data via some optimization criterion. Except rarely, the optimal rule for a gene will not be a perfect predictor because there will be inconsistencies in the data. It would be natural to model these inconsistencies to reflect changes in PBN contexts. If we assume inconsistencies result from the data arising from a random function, then design involves finding the realizations of a random function and the probability mass on those realizations so that the resulting random function best fits the data relative to the expectation of its output and does so using a minimal number of realizations. We propose PBN design satisfying the biological assumption that data are consistent within a context, for which the distribution of the network agrees with the empirical distribution of the data, and such that this is accomplished with a minimal number of contexts. The design also satisfies the biological constraint that, because the network spends the great majority of time in its attractors, all data states should be attractor states in the model.
机译:基因组信号处理的关键问题是基因调控网络的设计。概率布尔网络(PBN)由一系列布尔网络组成。它随机地在其组成网络(上下文)之间切换。对于网络设计,必须通过某种优化标准从数据中推断出连通性和过渡规则。除极少数情况外,基因的最佳规则不会成为完美的预测指标,因为数据中会存在不一致之处。对这些不一致进行建模以反映PBN上下文的变化是很自然的。如果我们假设由随机函数产生的数据不一致,则设计涉及寻找随机函数的实现以及这些实现的概率质量,从而使所得的随机函数相对于其输出的期望最适合数据,并且因此使用最少的实现。我们提出了PBN设计,该设计满足以下生物学假设:数据在上下文中是一致的,为此,网络的分布与数据的经验分布是一致的,因此可以在最少数量的上下文中完成。该设计还满足了生物学上的约束条件,因为网络在吸引子上花费了大部分时间,因此所有数据状态在模型中都应该是吸引子状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号