首页> 外文期刊>IEEE Transactions on Signal Processing >Non-Bayesian Detection and Detectability of Anomalies From a Few Noisy Tomographic Projections
【24h】

Non-Bayesian Detection and Detectability of Anomalies From a Few Noisy Tomographic Projections

机译:非贝叶斯检测和异常从几个嘈杂的层析成像投影的可检测性。

获取原文
获取原文并翻译 | 示例

摘要

The detection of an anomaly from a few noisy tomographic projections is addressed from the statistical point of view. An unknown scene is composed of a background, considered as a deterministic nuisance parameter, with a possibly hidden anomaly. Because the full pixel-by-pixel reconstruction is impossible, a parametric non-Bayesian approach is proposed to fill up the gap in the missing data. An optimal statistical test which eliminates the background and detects the anomaly is designed. The potential advantage of such an approach is its capacity to detect an anomaly/target hidden in background designed by an adversary to mask the anomaly. A key issue in the non-Bayesian anomaly detection, i.e., the problem of anomaly detectability, is stated and solved in this paper. In the case of a bivariate polynomial background defined on an unknown rectangular support, the size of detectable anomaly reaches its maximum defined by the number of elementary cells of X-ray detector and degree of the polynomial function
机译:从统计角度来看,可以解决从一些嘈杂的层析成像投影中检测到异常的问题。未知场景由被认为是确定性的讨厌参数的背景组成,并且可能隐藏有异常。由于不可能进行逐像素的完全重建,因此提出了一种参数化非贝叶斯方法来填补丢失数据中的空白。设计了消除背景并检测异常的最佳统计测试。这种方法的潜在优势是它能够检测到由对手设计的隐藏在背景中的异常/目标,以掩盖异常。本文提出并解决了非贝叶斯异常检测中的关键问题,即异常可检测性问题。在未知矩形支座上定义双变量多项式背景的情况下,可检测到的异常的大小达到其最大值,该最大值由X射线检测器的基本像元数和多项式函数的阶数定义

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号