首页> 外文期刊>IEEE Transactions on Image Processing >A multiscale hypothesis testing approach to anomaly detection and localization from noisy tomographic data
【24h】

A multiscale hypothesis testing approach to anomaly detection and localization from noisy tomographic data

机译:一种多尺度假设检验方法,用于从嘈杂的层析成像数据中异常检测和定位

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the problems of anomaly detection and localization from noisy tomographic data. These are characteristic of a class of problems that cannot be optimally solved because they involve hypothesis testing over hypothesis spaces with extremely large cardinality. Our multiscale hypothesis testing approach addresses the key issues associated with this class of problems. A multiscale hypothesis test is a hierarchical sequence of composite hypothesis tests that discards large portions of the hypothesis space with minimal computational burden and zooms in on the likely true hypothesis. For the anomaly detection and localization problems, hypothesis zooming corresponds to spatial zooming - anomalies are successively localized to finer and finer spatial scales. The key challenges we address include how to hierarchically divide a large hypothesis space and how to process the data at each stage of the hierarchy to decide which parts of the hypothesis space deserve more attention. For the latter, we pose and solve a nonlinear optimization problem for a decision statistic that maximally disambiguates composite hypotheses. With no more computational complexity, our optimized statistic shows substantial improvement over conventional approaches. We provide examples that demonstrate this and quantify how much performance is sacrificed by the use of a suboptimal method as compared to that achievable if the optimal approach were computationally feasible.
机译:在本文中,我们研究了从嘈杂的断层图像数据中进行异常检测和定位的问题。这些是无法最佳解决的一类问题的特征,因为它们涉及对具有极大基数的假设空间进行假设检验。我们的多尺度假设检验方法可解决与此类问题相关的关键问题。多尺度假设检验是复合假设检验的层次结构序列,它以最小的计算负担丢弃了大部分假设空间,并放大了可能的真实假设。对于异常检测和定位问题,假设缩放与空间缩放相对应-异常连续地定位在越来越小的空间尺度上。我们要解决的主要挑战包括如何对大型假设空间进行分层划分,以及如何在层次结构的每个阶段处理数据,以决定假设空间的哪些部分值得更多关注。对于后者,我们提出并解决了针对决策统计信息的非线性优化问题,该问题最大程度地消除了复合假设的歧义。由于没有更多的计算复杂性,我们的优化统计数据显示了与传统方法相比的实质性改进。我们提供了一些示例来证明这一点,并量化了与最佳方法在计算上可行的情况相比,使用次优方法所牺牲的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号