首页> 外文期刊>IEEE Transactions on Signal Processing >Maximum-Likelihood Estimation, the CramÉr–Rao Bound, and the Method of Scoring With Parameter Constraints
【24h】

Maximum-Likelihood Estimation, the CramÉr–Rao Bound, and the Method of Scoring With Parameter Constraints

机译:最大似然估计,CramÉr-Rao界以及带参数约束的评分方法

获取原文
获取原文并翻译 | 示例

摘要

Maximum-likelihood (ML) estimation is a popular approach to solving many signal processing problems. Many of these problems cannot be solved analytically and so numerical techniques such as the method of scoring are applied. However, in many scenarios, it is desirable to modify the ML problem with the inclusion of additional side information. Often this side information is in the form of parametric constraints, which the ML estimate (MLE) must now satisfy. We unify the asymptotic constrained ML (CML) theory with the constrained CramÉr–Rao bound (CCRB) theory by showing the CML estimate (CMLE) is asymptotically efficient with respect to the CCRB. We also generalize the classical method of scoring using the CCRB to include the constraints, satisfying the constraints after each iterate. Convergence properties and examples verify the usefulness of the constrained scoring approach. As a particular example, an alternative and more general CMLE is developed for the complex parameter linear model with linear constraints. A novel proof of the efficiency of this estimator is provided using the CCRB.
机译:最大似然(ML)估计是解决许多信号处理问题的一种流行方法。这些问题中有许多是无法解析解决的,因此应用了数值技术(例如评分方法)。但是,在许多情况下,希望通过包含其他辅助信息来修改ML问题。通常,此辅助信息采用参数约束的形式,这是ML估计(MLE)现在必须满足的。通过证明CML估计(CMLE)相对于CCRB是渐近有效的,我们将渐近约束ML(CML)理论与约束CramÉr-Rao界(CCRB)理论统一起来。我们还使用CCRB概括了经典的评分方法,以包括约束,并在每次迭代后满足约束。收敛性和实例证明了约束计分方法的有用性。作为一个特定的例子,为具有线性约束的复杂参数线性模型开发了另一种更通用的CMLE。使用CCRB提供了该估计器效率的新颖证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号