首页> 外文期刊>IEEE Transactions on Signal Processing >Uniformly Improving the CramÉr-Rao Bound and Maximum-Likelihood Estimation
【24h】

Uniformly Improving the CramÉr-Rao Bound and Maximum-Likelihood Estimation

机译:统一改善CramÉr-Rao界和最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

An important aspect of estimation theory is characterizing the best achievable performance in a given estimation problem, as well as determining estimators that achieve the optimal performance. The traditional CramÉr–Rao type bounds provide benchmarks on the variance of any estimator of a deterministic parameter vector under suitable regularity conditions, while requiring a-priori specification of a desired bias gradient. In applications, it is often not clear how to choose the required bias. A direct measure of the estimation error that takes both the variance and the bias into account is the mean squared error (MSE), which is the sum of the variance and the squared-norm of the bias. Here, we develop bounds on the MSE in estimating a deterministic parameter vector$ bf x_0$over all bias vectors that are linear in$ bf x_0$, which includes the traditional unbiased estimation as a special case. In some settings, it is possible to minimize the MSE over all linear bias vectors. More generally, direct minimization is not possible since the optimal solution depends on the unknown$ bf x_0$. Nonetheless, we show that in many cases, we can find bias vectors that result in an MSE bound that is smaller than the CramÉr–Rao lower bound (CRLB) for all values of$ bf x_0$. Furthermore, we explicitly construct estimators that achieve these bounds in cases where an efficient estimator exists, by performing a simple linear transformation on the standard maximum likelihood (ML) estimator. This leads to estimators that result in a smaller MSE than the ML approach for all possible values of$ bf x_0$.
机译:估计理论的一个重要方面是表征给定估计问题中最佳可实现的性能,并确定实现最佳性能的估计器。传统的CramÉr–Rao类型边界在适当的规则性条件下提供了确定性参数矢量的任何估计量方差的基准,同时要求先验指定所需的偏差梯度。在应用中,通常不清楚如何选择所需的偏置。将方差和偏差都考虑在内的估计误差的直接度量是均方误差(MSE),它是方差和偏差的平方范数的总和。在这里,我们在估计线性所有在$ bf x_0 $上的偏差矢量的确定性参数矢量$ bf x_0 $时,发展了MSE的界限,这包括传统的无偏估计作为特殊情况。在某些情况下,可以在所有线性偏置矢量上最小化MSE。更一般而言,由于最佳解决方案取决于未知的$ bf x_0 $,因此不可能直接进行最小化。但是,我们表明,在许多情况下,对于$ bf x_0 $的所有值,我们都能找到导致MSE范围小于CramÉr-Rao下限(CRLB)的偏差矢量。此外,我们通过在标准最大似然(ML)估算器上执行简单的线性变换,来明确构造在存在有效估算器的情况下达到这些界限的估算器。对于$ bf x_0 $的所有可能值,这导致估计器得出的MSE比ML方法小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号