首页> 外文期刊>IEEE Transactions on Signal Processing >A Queuing Theoretic Approach to Processor Power Adaptation for Video Decoding Systems
【24h】

A Queuing Theoretic Approach to Processor Power Adaptation for Video Decoding Systems

机译:一种基于排队论的视频解码系统处理器功率自适应方法

获取原文
获取原文并翻译 | 示例

摘要

Video decoding applications must often cope with highly time-varying workload demands, while meeting stringent display deadlines. Voltage/frequency scalable processors are highly attractive for video decoding on resource-constrained systems, since significant energy savings can be achieved by dynamically adapting the processor speed based on the changing workload demand. Previous works on video-related voltage scaling algorithms are often limited by the lack of a good complexity model for video and often do not explicitly consider the video quality impact of various steps involved in the decoding process. Our contribution in this paper is threefold. First, we propose a novel complexity model through offline training that explicitly considers the video source characteristics, the encoding algorithm, and platform specifics to predict execution times. Second, based on the complexity model, we propose low complexity online voltage scaling algorithms to process decoding jobs such that they meet their display deadlines with high probability. We show that on average, our queuing-based voltage scaling algorithm provides approximately 10%–15% energy savings over existing voltage scaling algorithms. Finally, we propose a joint voltage scaling and quality-aware priority scheduling algorithm that decodes jobs in order of their distortion impact, such that by setting the processor to various power levels and decoding only the jobs that contribute most to the overall quality, efficient quality, and energy tradeoffs can be achieved. We demonstrate the scalability of our algorithm in various practical decoding scenarios, where reducing the power to 25% of the original power can lead to quality degradations of less than 1.0 dB PSNR.
机译:视频解码应用程序必须经常满足高度时变的工作负载需求,同时还要满足严格的显示期限。电压/频率可扩展处理器对于在资源受限的系统上进行视频解码非常有吸引力,因为可以根据不断变化的工作负载需求动态调整处理器速度来节省大量能源。先前有关视频的电压缩放算法的工作通常受到缺乏良好的视频复杂度模型的限制,并且通常没有明确考虑解码过程中涉及的各个步骤对视频质量的影响。我们在本文中的贡献是三方面的。首先,我们通过离线培训提出了一种新颖的复杂性模型,该模型明确考虑了视频源特性,编码算法和平台细节以预测执行时间。其次,基于复杂度模型,我们提出了低复杂度的在线电压缩放算法来处理解码作业,以使它们极有可能满足其显示截止日期。我们表明,与现有的电压缩放算法相比,基于排队的电压缩放算法平均可节省大约10%至15%的能源。最后,我们提出了一种联合电压缩放和质量感知的优先级调度算法,该算法对作业按其失真影响的顺序进行解码,从而通过将处理器设置为各种功率级别并仅解码对整体质量,有效质量贡献最大的作业,可以实现能源折衷。我们展示了我们算法在各种实际解码方案中的可扩展性,其中将功率降低到原始功率的25%可能导致质量下降小于1.0 dB PSNR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号