首页> 外文期刊>Signal Processing, IEEE Transactions on >Sticky Hidden Markov Modeling of Comparative Genomic Hybridization
【24h】

Sticky Hidden Markov Modeling of Comparative Genomic Hybridization

机译:比较基因组杂交的粘性隐马尔可夫模型

获取原文
获取原文并翻译 | 示例

摘要

We develop a sticky hidden Markov model (HMM) with a Dirichlet distribution (DD) prior, motivated by the problem of analyzing comparative genomic hybridization (CGH) data. As formulated the sticky DD-HMM prior is employed to infer the number of states in an HMM, while also imposing state persistence. The form of the proposed hierarchical model allows efficient variational Bayesian (VB) inference, of interest for large-scale CGH problems. We compare alternative formulations of the sticky HMM, while also examining the relative efficacy of VB and Markov chain Monte Carlo (MCMC) inference. To validate the formulation, example results are presented for an illustrative synthesized data set and our main application—CGH, for which we consider data for breast cancer. For the latter, we also make comparisons and partially validate the CGH analysis through factor analysis of associated (but distinct) gene-expression data.
机译:我们开发了一种具有Dirichlet分布(DD)的粘性隐式马尔可夫模型(HMM),其动机是分析比较基因组杂交(CGH)数据的问题。按照公式,粘性DD-HMM先验用于推断HMM中的状态数,同时还施加状态持久性。所提出的层次模型的形式允许有效的变分贝叶斯(VB)推断,这是大规模CGH问题所关注的。我们比较了粘性HMM的替代配方,同时还检查了VB和Markov链蒙特卡洛(MCMC)推论的相对功效。为了验证配方,我们提供了示例性结果,用于示例性合成数据集和我们的主要应用CGH,我们将其用于乳腺癌数据。对于后者,我们还进行了比较,并通过对相关(但不同)的基因表达数据进行因子分析来部分验证CG​​H分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号