首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions
【24h】

Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions

机译:对偶粘性分层Dirichlet过程隐马尔可夫模型及其在运动自然语言描述中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. The number of HMMs and the number of topics are both automatically determined. The sticky prior avoids redundant states and makes our HDP-HMM more effective to model multimodal observations. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. The sources and sinks in the scene are learnt by clustering endpoints (origins and destinations) of trajectories. The semantic motion regions are learnt using the points in trajectories. On combining the learnt sources and sinks, the learnt semantic motion regions, and the learnt sequence of atomic activities, the action represented by a trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.
机译:本文提出了一种新的非参数贝叶斯模型,称为双重粘性分层Dirichlet过程隐马尔可夫模型(HDP-HMM),用于从一系列时间序列数据(如轨迹)中进行挖掘。所有时间序列数据都是聚类的。 HMM对与运动模式相对应的每个时间序列数据簇进行建模。我们的模型假设一组HMM具有相同的状态集(类似于用于文档处理的主题模型的主题),但是具有唯一的过渡分布。 HMM的数量和主题的数量都是自动确定的。粘性先验避免了冗余状态,并使我们的HDP-HMM更有效地为多模式观测建模。对于运动轨迹建模的应用,主题对应于运动活动。学到的主题会聚集成原子活动并分配谓词。我们提出一种贝叶斯推理方法,将给定的轨迹分解为一系列原子活动。通过对轨迹的端点(起点和终点)进行聚类来了解场景中的源和汇。使用轨迹中的点学习语义运动区域。通过将学习到的源和接收器,学习到的语义运动区域和学习到的原子活动序列进行组合,可以用自然语言尽可能自动地描述由轨迹表示的动作。我们的双粘性HDP-HMM的有效性已在多个轨迹数据集中得到验证。从交通场景中提取的车辆轨迹证明了自然语言描述对运动的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号