首页> 外文期刊>Signal Processing, IEEE Transactions on >Representation and Generation of Non-Gaussian Wide-Sense Stationary Random Processes With Arbitrary PSDs and a Class of PDFs
【24h】

Representation and Generation of Non-Gaussian Wide-Sense Stationary Random Processes With Arbitrary PSDs and a Class of PDFs

机译:具有任意PSD和一类PDF的非高斯广义常驻平稳随机过程的表示和生成

获取原文
获取原文并翻译 | 示例

摘要

A new method for representing and generating realizations of a wide-sense stationary non-Gaussian random process is described. The representation allows one to independently specify the power spectral density and the first-order probability density function of the random process. The only proviso is that the probability density function must be symmetric and infinitely divisible. The method proposed models the sinusoidal component frequencies as random variables, a key departure from the usual representation a of wide-sense stationary random process by the spectral theorem. Ergodicity in the mean and autocorrelation is also proven, under certain conditions. An example is given to illustrate its application to the K distribution, which is important in many physical modeling problems in radar and sonar.
机译:描述了一种用于表示和生成广义的平稳非高斯随机过程的实现的新方法。该表示允许人们独立指定随机过程的功率谱密度和一阶概率密度函数。唯一的条件是,概率密度函数必须是对称且无限可整的。所提出的方法将正弦分量频率建模为随机变量,这是频谱定理与广义固定平稳随机过程的通常表示a的关键偏离。在某些条件下,均值和自相关的遍历性也得到了证明。举例说明了其在K分布中的应用,这在雷达和声纳的许多物理建模问题中很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号