首页> 外文期刊>Signal Processing, IEEE Transactions on >Bayesian Data Fusion for Distributed Target Detection in Sensor Networks
【24h】

Bayesian Data Fusion for Distributed Target Detection in Sensor Networks

机译:贝叶斯数据融合在传感器网络中的分布式目标检测

获取原文
获取原文并翻译 | 示例

摘要

In this correspondence, we study different approaches for Bayesian data fusion for distributed target detection in sensor networks. Due to communication and bandwidth constraints, we assume that each sensor can only transmit a local decision to the fusion center (FC), which is in charge to take the final decision about the presence of a target. The optimal Bayesian test statistic at the FC is derived in the case where both the number and locations of the sensors are known. On the other hand, if both the number and the locations of the sensors are unknown, the optimal Bayesian test statistic is computed based on the same observations that the Scan Statistic test utilizes. The performances of the different approaches are compared through simulation.
机译:在这种对应关系中,我们研究了用于传感器网络中分布式目标检测的贝叶斯数据融合的不同方法。由于通信和带宽的限制,我们假设每个传感器只能将本地决策发送到融合中心(FC),后者负责就目标的存在做出最终决策。在已知传感器的数量和位置的情况下,得出FC处的最佳贝叶斯测试统计量。另一方面,如果传感器的数量和位置均未知,则基于“扫描统计量”测试所使用的相同观察结果来计算最佳贝叶斯测试统计量。通过仿真比较了不同方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号