首页> 外文期刊>Signal Processing, IEEE Transactions on >Block-Sparse Signals: Uncertainty Relations and Efficient Recovery
【24h】

Block-Sparse Signals: Uncertainty Relations and Efficient Recovery

机译:稀疏信号:不确定性关系和有效恢复

获取原文
获取原文并翻译 | 示例

摘要

We consider efficient methods for the recovery of block-sparse signals—i.e., sparse signals that have nonzero entries occurring in clusters—from an underdetermined system of linear equations. An uncertainty relation for block-sparse signals is derived, based on a block-coherence measure, which we introduce. We then show that a block-version of the orthogonal matching pursuit algorithm recovers block $k$-sparse signals in no more than $k$ steps if the block-coherence is sufficiently small. The same condition on block-coherence is shown to guarantee successful recovery through a mixed $ell_{2}/ell_{1}$-optimization approach. This complements previous recovery results for the block-sparse case which relied on small block-restricted isometry constants. The significance of the results presented in this paper lies in the fact that making explicit use of block-sparsity can provably yield better reconstruction properties than treating the signal as being sparse in the conventional sense, thereby ignoring the additional structure in the problem.
机译:我们考虑从不确定的线性方程组中恢复块稀疏信号(即,簇中出现非零项的稀疏信号)的有效方法。基于块相干性度量,我们引入了块稀疏信号的不确定性关系。然后我们表明,如果块相干性足够小,则正交匹配追踪算法的块版本将以不超过$ k $的步长恢复块$ k $稀疏信号。显示了相同的块一致性条件,可以通过混合$ ell_ {2} / ell_ {1} $优化方法来保证成功恢复。这补充了先前依靠块受限的等轴测常数的稀疏情况的恢复结果。本文提出的结果的意义在于,与常规意义上将信号视为稀疏相比,明确使用块稀疏可以证明具有更好的重建特性,从而忽略了问题中的其他结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号