首页> 外文期刊>Signal Processing, IEEE Transactions on >An Iterative Kalman-Like Algorithm Ignoring Noise and Initial Conditions
【24h】

An Iterative Kalman-Like Algorithm Ignoring Noise and Initial Conditions

机译:忽略噪声和初始条件的迭代Kalman-Like算法

获取原文
获取原文并翻译 | 示例

摘要

We address a $p$ -shift finite impulse response (FIR) unbiased estimator (UE) for linear discrete time-varying filtering $(p=0)$, $p$-step prediction $(p>0)$, and $p$-lag smoothing $(p<0)$ in state space with no requirements for initial conditions and zero mean noise. A solution is found in a batch form and represented in a computationally efficient iterative Kalman-like one. It is shown that the Kalman-like FIR UE is able to outperform the Kalman filter if the noise covariances and initial conditions are not known exactly, noise is not white, and both the system and measurement noise components need to be filtered out. Otherwise, the errors are similar. Extensive numerical studies of the FIR UE are provided in Gaussian and non-Gaussian environments with outliers and temporary uncertainties.
机译:我们针对线性离散时变滤波$(p = 0)$,$ p $阶跃预测$(p> 0)$和$解决了$ p $位移有限脉冲响应(FIR)无偏估计器(UE) p $-滞后平滑状态空间中的$(p <0)$,不需要初始条件,平均噪声为零。以批处理形式找到一种解决方案,并以计算有效的迭代式卡尔曼式表示。结果表明,如果无法准确了解噪声协方差和初始条件,噪声不是白噪声,并且系统和测量噪声分量都需要滤除,则类似于Kalman的FIR UE可以胜过Kalman滤波器。否则,错误是相似的。在具有异常值和暂时不确定性的高斯和非高斯环境中,对FIR UE进行了广泛的数值研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号