首页> 外文期刊>Control Systems, IEEE >Unbiased Finite Impluse Response Filtering: An Iterative Alternative to Kalman Filtering Ignoring Noise and Initial Conditions
【24h】

Unbiased Finite Impluse Response Filtering: An Iterative Alternative to Kalman Filtering Ignoring Noise and Initial Conditions

机译:无偏有限冲激响应滤波:忽略噪声和初始条件的卡尔曼滤波的迭代替代方案

获取原文
获取原文并翻译 | 示例

摘要

If a system and its observation are both represented in state space with linear equations, the system noise and the measurement noise are white, Gaussian, and mutually uncorrelated, and the system and measurement noise statistics are known exactly; then, a Kalman filter (KF) [1] with the same order as the system provides optimal state estimates in a way that is simple and fast and uses little memory. Because such estimators are of interest for designers, numerous linear and nonlinear problems have been solved using the KF, and many articles about KF applications appear every year. However, the KF is an infinite impulse response (IIR) filter [2]. Therefore, the KF performance may be poor if operational conditions are far from ideal [3]. Researchers working in the field of statistical signal processing and control are aware of the numerous issues facing the use of the KF in practice: insufficient robustness against mismodeling [4] and temporary uncertainties [2], the strong effect of the initial values [1], and high vulnerability to errors in the noise statistics [5]-[7].
机译:如果一个系统及其观测都在状态空间中用线性方程式表示,则系统噪声和测量噪声为白色,高斯且互不相关,并且系统和测量噪声的统计信息是准确已知的;然后,具有与系统相同阶数的卡尔曼滤波器(KF)[1]以简单,快速且占用很少内存的方式提供最佳状态估计。因为这样的估计量对于设计人员很重要,所以使用KF解决了许多线性和非线性问题,并且每年都会出现许多有关KF应用的文章。但是,KF是无限脉冲响应(IIR)滤波器[2]。因此,如果操作条件不理想,KF性能可能会很差[3]。统计信号处理和控制领域的研究人员意识到,在实践中使用KF面临着许多问题:针对错误建模的鲁棒性不足[4]和临时不确定性[2],初始值的强大影响[1] ,并且很容易受到噪声统计数据[5]-[7]错误的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号