首页> 外文期刊>Signal Processing, IEEE Transactions on >New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data
【24h】

New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data

机译:可分离模型中稀疏参数估计的新方法及其在不规则采样数据频谱分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

Separable models occur frequently in spectral analysis, array processing, radar imaging and astronomy applications. Statistical inference methods for these models can be categorized in three large classes: parametric, nonparametric (also called “dense”) and semiparametric (also called “sparse”). We begin by discussing the advantages and disadvantages of each class. Then we go on to introduce a new semiparametric/sparse method called SPICE (a semiparametric/sparse iterative covariance-based estimation method). SPICE is computationally quite efficient, enjoys global convergence properties, can be readily used in the case of replicated measurements and, unlike most other sparse estimation methods, does not require any subtle choices of user parameters. We illustrate the statistical performance of SPICE by means of a line-spectrum estimation study for irregularly sampled data.
机译:可分离模型经常出现在频谱分析,阵列处理,雷达成像和天文学应用中。这些模型的统计推断方法可以分为三大类:参数,非参数(也称为“密集”)和半参数(也称为“稀疏”)。我们首先讨论每个类的优点和缺点。然后,我们继续介绍一种称为SPICE的新半参数/稀疏方法(一种基于半参数/稀疏迭代协方差的估计方法)。 SPICE在计算上非常有效,具有全局收敛性,可以在重复测量的情况下轻松使用,并且与大多数其他稀疏估计方法不同,它不需要用户参数的任何细微选择。我们通过对不规则采样数据进行线谱估计研究来说明SPICE的统计性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号