首页> 外文期刊>Signal Processing, IEEE Transactions on >A Novel Location-Penalized Maximum Likelihood Estimator for Bearing-Only Target Localization
【24h】

A Novel Location-Penalized Maximum Likelihood Estimator for Bearing-Only Target Localization

机译:一种仅方位目标定位的新颖的位置惩罚化最大似然估计器

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a location-penalized maximum likelihood (LPML) estimator for bearing only target localization. We develop a new penalized maximum likelihood cost function by transforming the variables of target position and bearings. The new penalized likelihood function can also be recognized as a posterior distribution under a Bayesian framework by penalizing a prior. We give analysis of the asymptotic properties and show that both traditional bearing maximum likelihood (TBML) and LPML estimators are asymptotically efficient estimators. To compare the performances of the TBML and LPML estimators, we analyze the Cramér-Rao lower bound (CRLB) of the two estimators and show that the bound of the LPML estimator is lower than that of the TBML estimator. Extensive simulations are performed. It is observed that the new LPML algorithm consistently outperforms other well-known algorithms. Field experiments are also conducted by applying this method to localize a vehicle using real-world data acquired by an acoustic array sensor network. The new LPML algorithm demonstrates superior performance in all the field experiments.
机译:在本文中,我们提出了仅用于目标定位的位置惩罚最大似然(LPML)估计器。我们通过变换目标位置和方位的变量,开发了一种新的惩罚最大似然成本函数。通过惩罚先验,新的惩罚似然函数也可以被识别为贝叶斯框架下的后验分布。我们给出了渐近性质的分析,并表明传统的方位最大似然(TBML)和LPML估计量都是渐近有效的估计量。为了比较TBML和LPML估计器的性能,我们分析了两个估计器的Cramér-Rao下界(CRLB),并显示LPML估计器的界限比TBML估计器的界限低。进行了广泛的模拟。可以看出,新的LPML算法始终优于其他知名算法。通过使用此方法使用声学阵列传感器网络获取的真实数据对车辆进行定位,也可以进行现场实验。新的LPML算法在所有现场实验中均表现出卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号