首页> 外文期刊>Signal Processing, IEEE Transactions on >Optimal Index Assignment for Multiple Description Scalar Quantization With Translated Lattice Codebooks
【24h】

Optimal Index Assignment for Multiple Description Scalar Quantization With Translated Lattice Codebooks

机译:带有翻译格码书的多描述标量量化的最佳索引分配

获取原文
获取原文并翻译 | 示例

摘要

We design a $K$ -description scalar quantizer, whose construction is based on a structure of translated scalar lattices and a lattice in $K-1$ dimensional space. The use of translated lattices provides a performance advantage by exploiting a so-called staggering gain. The use of the $K-1$ dimensional lattice facilitates analytic insight into the performance and significantly speeds up the computation of the index assignment compared to state-of-the-art methods. Using a common decoding method, the proposed index assignment is proven to be optimal for the $K$-description case. It is shown that the optimal index assignment is not unique. This is illustrated for the two-description case, where a periodic index assignment is selected from possible optimal assignments and described in detail. The performance of the proposed quantizer accurately matches theoretic analysis over the full range of operational redundancies. Moreover, the quantizer outperforms the state-of-the-art MD scheme as the redundancy among the description increases.
机译:我们设计了一个$ K $描述的标量量化器,其构造基于转换后的标量晶格和$ K-1 $维空间中的晶格的结构。通过利用所谓的交错增益,平移晶格的使用提供了性能优势。与最新方法相比,$ K-1 $维格的使用有助于对性能进行分析,并显着加快索引分配的计算。使用常见的解码方法,建议的索引分配被证明对于$ K $描述情况是最佳的。结果表明,最佳索引分配不是唯一的。对于两个描述的情况进行了说明,其中从可能的最佳分配中选择了周期性索引分配并进行了详细说明。所提出的量化器的性能可在整个操作冗余范围内准确匹配理论分析。此外,随着描述之间的冗余增加,量化器的性能优于最新的MD方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号