首页> 外文期刊>Signal Processing, IEEE Transactions on >Maximum Likelihood Estimation of a Structured Covariance Matrix With a Condition Number Constraint
【24h】

Maximum Likelihood Estimation of a Structured Covariance Matrix With a Condition Number Constraint

机译:条件数约束的结构协方差矩阵的最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we deal with the problem of estimating the disturbance covariance matrix for radar signal processing applications, when a limited number of training data is present. We determine the maximum likelihood (ML) estimator of the covariance matrix starting from a set of secondary data, assuming a special covariance structure (i.e., the sum of a positive semi-definite matrix plus a term proportional to the identity), and a condition number upper-bound constraint. We show that the formulated constrained optimization problem falls within the class of MAXDET problems and develop an efficient procedure for its solution in closed form. Remarkably, the computational complexity of the algorithm is of the same order as the eigenvalue decomposition of the sample covariance matrix. At the analysis stage, we assess the performance of the proposed algorithm in terms of achievable signal-to-interference-plus-noise ratio (SINR) both for a spatial and a Doppler processing. The results show that interesting SINR improvements, with respect to some existing covariance matrix estimation techniques, can be achieved.
机译:在本文中,当存在有限数量的训练数据时,我们处理估计用于雷达信号处理应用的干扰协方差矩阵的问题。我们假设一组特殊的协方差结构(即,正半定矩阵加与恒等式成正比的项)和一个条件,从一组辅助数据开始确定协方差矩阵的最大似然(ML)估计器数字上限约束。我们表明,所提出的约束优化问题属于MAXDET问题类别,并为封闭形式的求解开发了有效的程序。值得注意的是,该算法的计算复杂度与样本协方差矩阵的特征值分解的顺序相同。在分析阶段,我们根据空间和多普勒处理的可达到的信噪比加噪声比(SINR)评估所提出算法的性能。结果表明,相对于一些现有的协方差矩阵估计技术,可以实现有趣的SINR改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号