首页> 外文期刊>Signal Processing, IEEE Transactions on >Adaptive Emotional Information Retrieval From EEG Signals in the Time-Frequency Domain
【24h】

Adaptive Emotional Information Retrieval From EEG Signals in the Time-Frequency Domain

机译:时频域中脑电信号的自适应情绪信息检索

获取原文
获取原文并翻译 | 示例

摘要

This paper aims at developing adaptive methods for electroencephalogram (EEG) signal segmentation in the time-frequency domain, in order to effectively retrieve the emotion-related information within the EEG recordings. Using the multidimensional directed information analysis supported by the frontal brain asymmetry in the case of emotional reaction, a criterion, namely asymmetry index , is used to realize the proposed segmentation processes that take into account both the time and frequency (in the empirical mode decomposition domain) emotionally related EEG components. The efficiency of the -based “emotional” filters was justified through an extensive classification process, using higher-order crossings and cross-correlation as feature-vector extraction techniques and a support vector machine classifier for six different classification scenarios in the valence/arousal space. This resulted in mean classification rates from 64.17% up to 82.91% in a user-independent base, revealing the potential of establishing such a filtering for reliable EEG-based emotion recognition systems.
机译:本文旨在开发一种在时频域中进行脑电图(EEG)信号分段的自适应方法,以有效地检索EEG记录中与情绪有关的信息。在情绪反应的情况下,使用额叶大脑不对称性支持的多维定向信息分析,使用一个标准(即不对称性指数)来实现建议的分割过程,该过程考虑了时间和频率(在经验模式分解域中) )与情感有关的脑电图要素。基于“情感”滤波器的效率通过广泛的分类过程得到了证明,该过程使用高阶交叉和互相关作为特征向量提取技术,并针对价/原子空间中的六个不同分类方案使用支持向量机分类器。在不依赖用户的基础上,这导致平均分类率从64.17%上升至82.91%,这揭示了为可靠的基于EEG的情绪识别系统建立这种过滤的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号