首页> 外文期刊>IEEE Transactions on Signal Processing >Analysis of Point Based Image Registration Errors With Applications in Single Molecule Microscopy
【24h】

Analysis of Point Based Image Registration Errors With Applications in Single Molecule Microscopy

机译:基于点的图像配准误差分析及其在单分子显微镜中的应用

获取原文
获取原文并翻译 | 示例

摘要

We present an asymptotic treatment of errors involved in point-based image registration where control point (CP) localization is subject to heteroscedastic noise; a suitable model for image registration in fluorescence microscopy. Assuming an affine transform, CPs are used to solve a multivariate regression problem. With measurement errors existing for both sets of CPs this is an errors-in-variable problem and linear least squares is inappropriate; the correct method being generalized least squares. To allow for point dependent errors the equivalence of a generalized maximum likelihood and heteroscedastic generalized least squares model is achieved allowing previously published asymptotic results to be extended to image registration. For a particularly useful model of heteroscedastic noise where covariance matrices are scalar multiples of a known matrix (including the case where covariance matrices are multiples of the identity) we provide closed form solutions to estimators and derive their distribution. We consider the target registration error (TRE) and define a new measure called the localization registration error (LRE) believed to be useful, especially in microscopy registration experiments. Assuming Gaussianity of the CP localization errors, it is shown that the asymptotic distribution for the TRE and LRE are themselves Gaussian and the parameterized distributions are derived. Results are successfully applied to registration in single molecule microscopy to derive the key dependence of the TRE and LRE variance on the number of CPs and their associated photon counts. Simulations show asymptotic results are robust for low CP numbers and non-Gaussianity. The method presented here is shown to outperform GLS on real imaging data.
机译:我们提出了一种渐进式的错误处理方法,该方法涉及基于点的图像配准中的错误,其中控制点(CP)定位受异方差噪声的影响;荧光显微镜中图像配准的合适模型。假设仿射变换,CP用于解决多元回归问题。由于两组CP都存在测量误差,因此这是一个变量误差问题,线性最小二乘法是不合适的。正确的方法是广义最小二乘。为了允许点相关的误差,实现了广义最大似然和异方差广义最小二乘模型的等价性,从而允许将先前发布的渐近结果扩展到图像配准。对于特别有用的异方差噪声模型,其中协方差矩阵是已知矩阵的标量倍数(包括协方差矩阵是同一性的倍数的情况),我们为估计量提供了封闭形式的解决方案,并推导了它们的分布。我们考虑了目标配准误差(TRE),并定义了一种称为定位配准误差(LRE)的新方法,该方法被认为是有用的,尤其是在显微镜配准实验中。假设CP定位误差为高斯性,则表明TRE和LRE的渐近分布本身就是高斯分布,并推导了参数化分布。结果成功地应用于单分子显微镜中的配准,以得出TRE和LRE方差对CP数量及其相关光子计数的关键依赖性。仿真表明,渐近结果对于低CP数和非高斯性具有鲁棒性。在实际成像数据上,此处介绍的方法表现优于GLS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号