首页> 外文期刊>Signal Processing, IEEE Transactions on >Soft Nonnegative Matrix Co-Factorization
【24h】

Soft Nonnegative Matrix Co-Factorization

机译:软非负矩阵共因子化

获取原文
获取原文并翻译 | 示例

摘要

This work introduces a new framework for nonnegative matrix factorization (NMF) in multisensor or multimodal data configurations, where taking into account the mutual dependence that exists between the related parallel streams of data is expected to improve performance. In contrast with previous works that focused on co-factorization methods —where some factors are shared by the different modalities— we propose a soft co-factorization scheme which accounts for possible local discrepancies across modalities or channels. This objective is formalized as an optimization problem where concurrent factorizations are jointly performed while being tied by a coupling term that penalizes differences between the related factor matrices associated with different modalities. We provide majorization-minimization (MM) algorithms for three common measures of fit —the squared Euclidean norm, the Kullback-Leibler divergence and the Itakura-Saito divergence— and two possible coupling variants, using either the or the squared Euclidean norm of differences. The approach is shown to achieve promising performance in two audio-related tasks: multimodal speaker diarization using audiovisual data and audio source separation using stereo data.
机译:这项工作为多传感器或多模式数据配置中的非负矩阵分解(NMF)引入了一个新的框架,其中考虑到相关并行数据流之间存在的相互依赖关系有望改善性能。与以前专注于协同分解方法(某些因素由不同模式共享)的工作形成对比,我们提出了一种软协同分解方案,该方案考虑了跨模式或渠道之间可能存在的局部差异。这个目标被正式化为一个优化问题,其中同时进行并行分解并同时受到耦合项的约束,该耦合项惩罚了与不同模态相关的相关因子矩阵之间的差异。我们为三种常见的拟合度量(平方欧几里得范数,Kullback-Leibler发散和Itakura-Saito发散)以及两种可能的耦合变体提供了最小化(MM)算法,并使用了差异的欧几里得或平方欧​​几里得。该方法在两个与音频有关的任务中表现出令人鼓舞的性能:使用视听数据的多模式扬声器二值化和使用立体声数据的音频源分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号