首页> 外文期刊>Signal Processing, IEEE Transactions on >Multimodal Soft Nonnegative Matrix Co-Factorization for Convolutive Source Separation
【24h】

Multimodal Soft Nonnegative Matrix Co-Factorization for Convolutive Source Separation

机译:多模态软非负矩阵协因子用于卷积源分离

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of convolutive source separation via multimodal soft Nonnegative Matrix Co-Factorization (NMCF) is addressed. Different aspects of a phenomenon may be recorded by sensors of different types (e.g., audio and video of human speech), and each of these recorded signals is called a modality. Since the underlying phenomenon of the modalities is the same, they have some similarities. Especially, they usually have similar time changes. It means that changes in one of them usually correspond to changes in the other one. So their active or inactive periods are usually similar. Assuming this similarity, it is expected that the activation coefficient matrices of their Nonnegative Matrix Factorization (NMF) have a similar form. In this paper, the similarity of the activation coefficient matrices between the modalities is considered for co-factorization. This similarity is used for separation procedure in a soft manner by using penalty terms. This results in more flexibility in the separation procedure. Simulation results and comparison with state-of-the-art algorithms show the effectiveness of the proposed algorithm.
机译:在本文中,解决了通过多峰软非负矩阵共因子(NMCF)进行卷积源分离的问题。现象的不同方面可以由不同类型的传感器(例如,人类语音的音频和视频)记录,并且这些记录的信号中的每一个被称为模态。由于这些模式的基本现象是相同的,因此它们具有一些相似之处。特别是,它们通常具有相似的时间变化。这意味着其中之一的更改通常对应于另一项的更改。因此,它们的活跃期或非活跃期通常是相似的。假设这种相似性,可以预期其非负矩阵分解(NMF)的激活系数矩阵具有相似的形式。在本文中,考虑了模态之间的激活系数矩阵的相似性以进行共分解。通过使用惩罚项,这种相似性以柔和的方式用于分离过程。这使得分离过程具有更大的灵活性。仿真结果和与最新算法的比较证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号