首页> 外文期刊>Signal Processing, IEEE Transactions on >Gaussian Noise Time-Varying Power Spectrum Estimation With Minimal Statistics
【24h】

Gaussian Noise Time-Varying Power Spectrum Estimation With Minimal Statistics

机译:具有最小统计量的高斯噪声时变功率谱估计

获取原文
获取原文并翻译 | 示例

摘要

Given the spectrogram of an unknown signal embedded in a Gaussian noise, the Minimal Statistics Maximum Likelihood (MiniSMaL) estimator of the noise time-varying power spectrum is presented, and a method to tune one of its parameter is studied. The objective of the minimal statistics approach is to separate the signal of interest from the noise in order to estimate properly the probabilistic properties of the latter. Considering an initial time-frequency estimation neighborhood, the strategy relies on the selection of a minimal subset containing the time-frequency coefficients with the smallest values. Estimators of the noise are then sought from this minimal subset. In this work, the case of a spectrogram constructed from a finite-length discrete-time noisy signal is presented. This study extends previous works on minimal statistics on two aspects: first, the maximum likelihood estimate of the noise is formulated according to a clear analysis of the probability distribution of the time-frequency coefficients. Second, the choice of an optimal minimal subset is investigated. The signal versus noise discrimination property of the spectral kurtosis is used to select a minimal subset which ensures a fair trade-off between the bias and the variance of the estimator. The resulting performances are discussed and compared with those of other methods through numerical simulations on synthetic signals. The use of the MiniSMaL estimator in a time-frequency detection procedure is finally illustrated on a real-world signal.
机译:给定嵌入高斯噪声中的未知信号的频谱图,提出了噪声时变功率谱的最小统计最大似然(MiniSMaL)估计器,并研究了一种调整其参数之一的方法。最小统计方法的目的是将感兴趣的信号与噪声分开,以便正确估计噪声的概率性质。考虑初始的时频估计邻域,该策略依赖于选择包含具有最小值的时频系数的最小子集。然后从该最小子集中寻找噪声的估计器。在这项工作中,提出了一种由有限长度的离散时间噪声信号构成的频谱图的情况。这项研究从两个方面扩展了先前在最小统计量方面的工作:首先,根据对时频系数的概率分布的清晰分析,制定了噪声的最大似然估计。其次,研究最优最小子集的选择。频谱峰度的信号与噪声鉴别特性用于选择最小子集,该子集确保在估计器的偏差和方差之间进行公平的权衡。通过对合成信号进行数值模拟,讨论了所得的性能并将其与其他方法的性能进行了比较。最后,在实际信号上说明了MiniSMaL估计器在时频检测过程中的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号