首页> 外文期刊>Signal Processing, IEEE Transactions on >Analyzing Sparse Dictionaries for Online Learning With Kernels
【24h】

Analyzing Sparse Dictionaries for Online Learning With Kernels

机译:使用内核分析稀疏词典以进行在线学习

获取原文
获取原文并翻译 | 示例

摘要

Many signal processing and machine learning methods share essentially the same linear-in-the-parameter model, with as many parameters as available samples as in kernel-based machines. Sparse approximation is essential in many disciplines, with new challenges emerging in online learning with kernels. To this end, several sparsity measures have been proposed in the literature to quantify sparse dictionaries and constructing relevant ones, the most prolific ones being the distance, the approximation, the coherence and the Babel measures. In this paper, we analyze sparse dictionaries based on these measures. By conducting an eigenvalue analysis, we show that these sparsity measures share many properties, including the linear independence condition and inducing a well-posed optimization problem. Furthermore, we prove that there exists a quasi-isometry between the parameter (i.e., dual) space and the dictionary’s induced feature space.
机译:许多信号处理和机器学习方法基本上共享相同的参数线性模型,其参数与基于内核的机器中的可用样本一样多。在许多学科中,稀疏近似是必不可少的,在使用内核的在线学习中出现了新的挑战。为此,文献中提出了几种稀疏度量来量化稀疏词典并构建相关的稀疏度量,其中最多产的是距离,近似,相干性和Babel度量。在本文中,我们基于这些测度分析稀疏词典。通过进行特征值分析,我们表明这些稀疏性度量具有许多特性,包括线性独立条件和引发适定的优化问题。此外,我们证明了参数(即对偶)空间与字典的归纳特征空间之间存在拟等距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号