首页> 外文期刊>Signal Processing, IEEE Transactions on >Adaptive Randomized Coordinate Descent for Sparse Systems: Lasso and Greedy Algorithms
【24h】

Adaptive Randomized Coordinate Descent for Sparse Systems: Lasso and Greedy Algorithms

机译:稀疏系统的自适应随机坐标下降:套索和贪婪算法

获取原文
获取原文并翻译 | 示例

摘要

Coordinate descent (CD) is a simple optimization technique suited to low complexity requirements and also for solving large problems. In randomized version, CD was recently shown as very effective for solving least-squares (LS) and other optimization problems. We propose here an adaptive version of randomized coordinate descent (RCD) for finding sparse LS solutions, from which we derive two algorithms, one based on the lasso criterion, the other using a greedy technique. Both algorithms employ a novel way of adapting the probabilities for choosing the coordinates, based on a matching pursuit criterion. Another new feature is that, in the lasso algorithm, the penalty term values are built without knowing the noise level or using other prior information. The proposed algorithms use efficient computations and have a tunable trade-off between complexity and performance through the number of CD steps per time instant. Besides a general theoretical convergence analysis, we present simulations that show good practical behavior, comparable to or better than that of state of the art methods.
机译:协调下降(CD)是一种简单的优化技术,适用于低复杂度要求,也适用于解决大问题。在随机版本中,CD最近显示出对解决最小二乘(LS)和其他优化问题非常有效。我们在这里提出一种自适应版本的随机坐标下降(RCD),用于查找稀疏LS解,从中我们得出两种算法,一种基于套索准则,另一种采用贪婪技术。两种算法都采用了一种新颖的方式,可以根据匹配的跟踪准则来调整选择坐标的概率。另一个新功能是,在套索算法中,构建惩罚项值时无需知道噪声水平或使用其他先验信息。所提出的算法使用高效的计算,并通过每个瞬时CD步骤的数量在复杂性和性能之间进行可调的折衷。除了一般的理论收敛性分析外,我们还提供了具有良好实践行为的仿真,这些仿真行为可与甚至比现有方法更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号