首页> 外文期刊>Signal Processing, IEEE Transactions on >Bayesian Multi-Target Tracking With Merged Measurements Using Labelled Random Finite Sets
【24h】

Bayesian Multi-Target Tracking With Merged Measurements Using Labelled Random Finite Sets

机译:使用标记随机有限集进行合并测量的贝叶斯多目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

Most tracking algorithms in the literature assume that the targets always generate measurements independently of each other, i.e., the sensor is assumed to have infinite resolution. Such algorithms have been dominant because addressing the presence of merged measurements increases the computational complexity of the tracking problem, and limitations on computing resources often make this infeasible. When merging occurs, these algorithms suffer degraded performance, often due to tracks being terminated too early. In this paper, we use the theory of random finite sets (RFS) to develop a principled Bayesian solution to tracking an unknown and variable number of targets in the presence of merged measurements. We propose two tractable implementations of the resulting filter, with differing computational requirements. The performance of these algorithms is demonstrated by Monte Carlo simulations of a multi-target bearings-only scenario, where measurements become merged due to the effect of finite sensor resolution.
机译:文献中的大多数跟踪算法都假定目标始终彼此独立地生成测量值,即假定传感器具有无限分辨率。由于解决合并测量的存在会增加跟踪问题的计算复杂性,并且对计算资源的限制通常使这种方法不可行,因此这种算法一直占据主导地位。合并时,这些算法的性能会下降,通常是因为音轨终止得太早。在本文中,我们使用随机有限集(RFS)的理论来开发一种有原则的贝叶斯解决方案,以在存在合并度量的情况下跟踪未知和可变数量的目标。我们提出了具有不同计算要求的结果滤波器的两种易处理的实现。这些算法的性能通过多目标纯方位场景的蒙特卡洛仿真得到证明,其中由于有限的传感器分辨率的影响,测量结果被合并。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号