首页> 外文期刊>Signal Processing, IEEE Transactions on >Maximum Likelihood SNR Estimation of Linearly-Modulated Signals Over Time-Varying Flat-Fading SIMO Channels
【24h】

Maximum Likelihood SNR Estimation of Linearly-Modulated Signals Over Time-Varying Flat-Fading SIMO Channels

机译:时变平坦衰落SIMO通道上线性调制信号的最大似然SNR估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we tackle for the first time the problem of maximum likelihood (ML) estimation of the signal-to-noise ratio (SNR) parameter over time-varying single-input multiple-output (SIMO) channels. Both the data-aided (DA) and the non-data-aided (NDA) schemes are investigated. Unlike classical techniques where the channel is assumed to be slowly time-varying and, therefore, considered as constant over the entire observation period, we address the more challenging problem of instantaneous (i.e., short-term or local) SNR estimation over fast time-varying channels. The channel variations are tracked locally using a polynomial-in-time expansion. First, we derive in closed-form expressions the DA ML estimator and its bias. The latter is subsequently subtracted in order to obtain a unbiased DA estimator whose variance and the corresponding Cramér-Rao lower bound (CRLB) are also derived in closed form. Due to the extreme nonlinearity of the log-likelihood function (LLF) in the NDA case, we resort to the expectation-maximization (EM) technique to iteratively obtain the exact NDA ML SNR estimates within very few iterations. Most remarkably, the new EM-based NDA estimator is applicable to any linearly-modulated signal and provides sufficiently accurate soft estimates (i.e., soft detection) for the unknown transmitted symbols. Therefore, hard detection can be easily embedded in the iteration loop in order to improve its performance at low SNR levels. We show by extensive computer simulations that the new estimators are able to accurately estimate the instantaneous per-antenna SNRs as they coincide with the DA CRLB over a wide range of practical SNRs.
机译:在本文中,我们首次解决了时变单输入多输出(SIMO)通道上信噪比(SNR)参数的最大似然(ML)估计问题。研究了数据辅助(DA)和非数据辅助(NDA)方案。与经典技术不同,在经典技术中,信道被假定为时变缓慢,因此在整个观察周期内被认为是恒定的,因此,我们解决了在较快的时间范围内,瞬时(即短期或局部)SNR估计更具挑战性的问题,各种渠道。使用时间多项式扩展在本地跟踪通道变化。首先,我们以封闭形式表达DA ML估计量及其偏差。随后减去后者,以获得无偏DA估计量,该估计量的方差和相应的Cramér-Rao下限(CRLB)也以封闭形式导出。由于在NDA情况下对数似然函数(LLF)的极端非线性,我们求助于期望最大化(EM)技术以在极少的迭代中迭代获得准确的NDA ML SNR估计。最值得注意的是,新的基于EM的NDA估计器适用于任何线性调制信号,并为未知的传输符号提供足够准确的软估计(即,软检测)。因此,可以在迭代循环中轻松嵌入硬检测,以提高其在低SNR级别下的性能。我们通过广泛的计算机仿真表明,新的估算器能够在各种实际SNR范围内与DA CRLB一致时,准确估算瞬时每天线SNR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号