首页> 外文期刊>IEEE Transactions on Signal Processing >A Structured Sparse Plus Structured Low-Rank Framework for Subspace Clustering and Completion
【24h】

A Structured Sparse Plus Structured Low-Rank Framework for Subspace Clustering and Completion

机译:用于子空间聚类和完成的结构化稀疏加结构化低秩框架

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in a low-rank matrix completion have enabled the exact recovery of incomplete data drawn from a low-dimensional subspace of a high-dimensional observation space. However, in many applications, the data are drawn from multiple low-dimensional subspaces without knowing which point belongs to which subspace. In such cases, using a single low-dimensional subspace to complete the data may lead to erroneous results, because the complete data matrix need not be low rank. In this paper, we propose a structured sparse plus structured low-rank (S3LR) optimization framework for clustering and completing data drawn from a union of low-dimensional subspaces. The proposed S3LR framework exploits the fact that each point in a union of subspaces can be expressed as a sparse linear combination of all other points and that the matrix of the points within each subspace is low rank. This framework leads to a nonconvex optimization problem, which we solve efficiently by using a combination of a linearized alternating direction method of multipliers and spectral clustering. In addition, we discuss the conditions that guarantee the exact matrix completion in a union of subspaces. Experiments on synthetic data, motion segmentation data, and cancer gene data validate the effectiveness of the proposed approach.
机译:低秩矩阵完成的最新进展已使从高维观测空间的低维子空间提取的不完整数据的精确恢复成为可能。但是,在许多应用中,数据是从多个低维子空间中提取的,而不知道哪个点属于哪个子空间。在这种情况下,使用单个低维子空间来完成数据可能会导致错误的结果,因为完整的数据矩阵不必是低等级的。在本文中,我们提出了一种结构化的稀疏加结构化低秩(S3LR)优化框架,用于聚类并完成从低维子空间的并集得出的数据。提出的S3LR框架利用了以下事实:子空间并集中的每个点都可以表示为所有其他点的稀疏线性组合,并且每个子空间内的点矩阵是低秩的。该框架导致了一个非凸优化问题,我们可以通过结合使用乘数的线性交替方向方法和频谱聚类来有效解决该问题。另外,我们讨论了保证在子空间的并集中精确矩阵完成的条件。对合成数据,运动分割数据和癌症基因数据进行的实验验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号