首页> 外文期刊>IEEE Transactions on Signal Processing >Identification of Successive “Unobservable” Cyber Data Attacks in Power Systems Through Matrix Decomposition
【24h】

Identification of Successive “Unobservable” Cyber Data Attacks in Power Systems Through Matrix Decomposition

机译:通过矩阵分解识别电力系统中连续的“不可观察的”网络数据攻击

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new framework of identifying a series of cyber data attacks on power system synchrophasor measurements. We focus on detecting “unobservable” cyber data attacks that cannot be detected by any existing method that purely relies on measurements received at one time instant. Leveraging the approximate low-rank property of phasor measurement unit (PMU) data, we formulate the identification problem of successive unobservable cyber attacks as a matrix decomposition problem of a low-rank matrix plus a transformed column-sparse matrix. We propose a convex-optimization-based method and provide its theoretical guarantee in the data identification. Numerical experiments on actual PMU data from the Central New York power system and synthetic data are conducted to verify the effectiveness of the proposed method.
机译:本文提出了一种新的框架,该框架可识别针对电力系统同步相量测量的一系列网络数据攻击。我们专注于检测“无法观察到的”网络数据攻击,这些攻击无法通过任何仅依靠一次即时接收到的测量值的现有方法来检测。利用相量测量单元(PMU)数据的近似低秩属性,我们将连续不可观察的网络攻击的识别问题公式化为低秩矩阵加变换后的列稀疏矩阵的矩阵分解问题。我们提出了一种基于凸优化的方法,并为数据识别提供了理论上的保证。对来自纽约中央电力系统的实际PMU数据和综合数据进行了数值实验,以验证该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号