首页> 外文期刊>IEEE Transactions on Power Systems >Power Systems Decomposition for Robustifying State Estimation Under Cyber Attacks
【24h】

Power Systems Decomposition for Robustifying State Estimation Under Cyber Attacks

机译:用于网络攻击下强制性状态估计的电力系统分解

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an automatic algorithm for the on-line implementation of a robust static state estimator on large power systems. The proposed algorithm maximizes the number of outliers and cyber-attacks that the estimator can resist while giving reliable estimates. The large power system is decomposed in several islands or subsystems, and a highly robust regression estimator, namely the least trimmed squares estimator (LTS), is implemented on each island to detect bad data. Executing the estimators in parallel will greatly reduce the computation time of the robust static state estimator. The introduced method is compared with two cycle detection graph-theory approaches, namely depth-first search (DFS) and minimum spanning tree (MST), which have been adapted here for power state estimation. Simulations on IEEE 14, 30, 57, 118, 145, and 300 bus systems show the superior performance of the proposed algorithm over the adapted DFS and MST. The algorithm could reduce significantly the number and size of cycles in the system. Furthermore, the number of detected outliers, and attacks is maximized while the observability of the system is ensured. Attacks or outliers on both measurements, and topology of the grid are detected as well.
机译:本文提出了一种自动算法,用于大型电力系统上的鲁棒静态估计器的在线实现。所提出的算法最大化了估计器可以抵抗的异常值和网络攻击的数量,同时提供可靠的估计。大电源系统在多个岛屿或子系统中分解,并且在每个岛上在每个岛上实现高强度回归估计器,即最小修整的方块估计器(LTS)以检测不良数据。并行执行估计值将大大降低稳健的静态状态估计器的计算时间。将引入的方法与两个循环检测图形理论方法进行比较,即深度第一搜索(DFS)和最小生成树(MST),其在此适用于电源状态估计。 IEEE 14,30,57,118,145和300总线系统的模拟显示了所提出的算法在适应的DFS和MST上的卓越性能。该算法可以显着降低系统中周期的数量和大小。此外,检测到的异常值的数量和攻击在确保系统的可观察性时最大化。还检测到攻击或栅格的拓扑上的攻击或异常值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号