首页> 外文期刊>IEEE Transactions on Signal Processing >Iterative Methods for Subspace and DOA Estimation in Nonuniform Noise
【24h】

Iterative Methods for Subspace and DOA Estimation in Nonuniform Noise

机译:非均匀噪声中子空间和DOA估计的迭代方法

获取原文
获取原文并翻译 | 示例

摘要

Usually, direction-of-arrival (DOA) estimators are derived under the assumption of uniform white noise, whose covariance matrix is a scaled identity matrix. However, in practice, the noise can be nonuniform with an arbitrary unknown diagonal covariance matrix. In this situation, the performance of DOA estimators may be deteriorated considerably if the noise nonuniformity is ignored. To tackle this problem, iterative approaches to subspace estimation are developed and the corresponding subspace-based DOA estimators are addressed. In our proposed methods, the signal subspace and noise covariance matrix are first determined by maximizing the log-likelihood (LL) function or solving a least-squares (LS) minimization problem, both of which are accomplished in an iterative manner. Then, the DOAs are determined from the subspace estimate and/or noise covariance matrix estimate with the help of traditional DOA estimators. As the signal subspace and noise covariance matrix can be computed in closed-form in each iteration, the proposals are computationally attractive. Furthermore, the signal subspace is directly calculated without the requirement of the exact knowledge of the array manifold, enabling us to handle array uncertainties by incorporating conventional subspace-based calibration algorithms. Simulations and experimental results are included to demonstrate the superiority of the proposed approaches.
机译:通常,到达方向(DOA)估计值是在均匀白噪声的假设下得出的,其协方差矩阵是缩放的恒等矩阵。但是,实际上,噪声可能与任意未知的对角协方差矩阵不一致。在这种情况下,如果忽略噪声不均匀性,DOA估计器的性能可能会大大降低。为了解决这个问题,开发了迭代的子空间估计方法,并解决了相应的基于子空间的DOA估计器。在我们提出的方法中,首先通过最大化对数似然(LL)函数或解决最小二乘(LS)最小化问题来确定信号子空间和噪声协方差矩阵,二者均以迭代方式完成。然后,借助传统的DOA估计器,从子空间估计和/或噪声协方差矩阵估计中确定DOA。由于可以在每次迭代中以封闭形式计算信号子空间和噪声协方差矩阵,因此这些建议在计算上很有吸引力。此外,信号子空间是直接计算的,而无需阵列流形的确切知识,这使我们能够通过结合传统的基于子空间的校准算法来处理阵列不确定性。仿真和实验结果也包括在内,以证明所提出方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号