首页> 外文期刊>Signal Processing, IEEE Transactions on >Techniques for Generating Analytic Covariance Expressions for Eigenvalues and Eigenvectors
【24h】

Techniques for Generating Analytic Covariance Expressions for Eigenvalues and Eigenvectors

机译:生成特征值和特征向量的解析协方差表达式的技术

获取原文
获取原文并翻译 | 示例

摘要

One of the key problems in data fusion is the estimation of a parameter vector from a set of noisy measurements. In many cases, the optimal estimate of such a parameter vector can be solved through the least squares problem. There are, however, a number of important problems whose solution instead takes the form of an eigenvalue-eigenvector problem. Furthermore, knowledge of the uncertainty of the optimal estimate is as important as the estimate itself for many practical applications—and this uncertainty is typically captured in the form of a covariance matrix. While the covariance matrix for a least squares estimate has been well studied, there has been substantially less research on the covariance of an optimal estimate originating from an eigenvalue-eigenvector problem. In this paper, we develop general expressions that determine the uncertainty in a vector estimate obtained from an eigenvalue–eigenvector problem given the uncertainty of the matrix. This includes developing expressions for the analytic derivatives of the eigenvalues and eigenvectors with respect to the matrix from which they come. Finally, the techniques developed are numerically validated with forward finite differencing and a Monte Carlo analysis and then used to determine covariance expressions for an ellipse fitting technique and the estimation of attitude quaternions.
机译:数据融合中的关键问题之一是根据一组噪声测量值估计参数向量。在许多情况下,可以通过最小二乘问题解决此类参数向量的最佳估计。但是,有许多重要的问题,其解决方案采用特征值-特征向量问题的形式。此外,对于许多实际应用而言,最佳估计的不确定性知识与估计本身一样重要,并且通常以协方差矩阵的形式捕获这种不确定性。尽管已经对最小二乘估计的协方差矩阵进行了深入研究,但对源自特征值-特征向量问题的最优估计的协方差的研究却很少。在本文中,我们开发了通用表达式,这些表达式确定了在给定矩阵不确定性的情况下从特征值-特征向量问题获得的矢量估计中的不确定性。这包括针对特征值和特征向量相对于它们来自的矩阵的解析导数开发表达式。最后,对所开发的技术进行正向有限差分和蒙特卡洛分析的数值验证,然后将其用于确定椭圆拟合技术的协方差表达式和姿态四元数的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号