首页> 外文期刊>Signal Processing, IEEE Transactions on >Lagrange Programming Neural Network Approach for Target Localization in Distributed MIMO Radar
【24h】

Lagrange Programming Neural Network Approach for Target Localization in Distributed MIMO Radar

机译:分布式MIMO雷达目标定位的拉格朗日编程神经网络方法。

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of source localization in distributed multiple-input multiple-output (MIMO) radar using bistatic range measurements, which correspond to the sum of transmitter-to-target and target-to-receiver distances, is addressed. Our solution is based on the Lagrange programming neural network (LPNN), which is an analog neural computational technique for solving nonlinear constrained optimization problems according to the Lagrange multiplier theory. The local stability of the proposed positioning algorithm is also investigated. Furthermore, we have extended the LPNN based approach to more challenging scenarios, namely, when time synchronization among all antennas cannot be fulfilled, and there are position uncertainties in the MIMO radar transmit and receive elements. The optimality of the developed algorithms is demonstrated by comparing with the Cramér-Rao lower bound via computer simulations.
机译:在本文中,解决了使用双基地距离测量的分布式多输入多输出(MIMO)雷达中的源定位问题,该距离对应于发射机到目标的距离和目标到接收机的距离之和。我们的解决方案基于拉格朗日编程神经网络(LPNN),这是一种根据拉格朗日乘数理论解决非线性约束优化问题的模拟神经计算技术。还研究了所提出的定位算法的局部稳定性。此外,我们已经将基于LPNN的方法扩展到更具挑战性的场景,即,当无法满足所有天线之间的时间同步并且MIMO雷达发送和接收元素中存在位置不确定性时。通过计算机仿真与Cramér-Rao下界进行比较,证明了所开发算法的最优性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号