首页> 外文期刊>Signal Processing, IEEE Transactions on >Recovery of Sparse Signals via Generalized Orthogonal Matching Pursuit: A New Analysis
【24h】

Recovery of Sparse Signals via Generalized Orthogonal Matching Pursuit: A New Analysis

机译:通过广义正交匹配追踪恢复稀疏信号:一种新的分析

获取原文
获取原文并翻译 | 示例

摘要

As an extension of orthogonal matching pursuit (OMP) for improving the recovery performance of sparse signals, generalized OMP (gOMP) has recently been studied in the literature. In this paper, we present a new analysis of the gOMP algorithm using the restricted isometry property (RIP). We show that if a measurement matrix satisfies the RIP with isometry constant , then gOMP performs stable reconstruction of all -sparse signals from the noisy measurements , within iterations, where is the noise vector and is the number of indices chosen in each iteration of the gOMP algorithm. For Gaussian random measurements, our result indicates that the number of required measurements is essentially , which is a significant improvement over the existing result , especially for large .
机译:作为改进稀疏信号恢复性能的正交匹配追踪(OMP)的扩展,最近在文献中对广义OMP(gOMP)进行了研究。在本文中,我们使用受限等距特性(RIP)对gOMP算法进行了新的分析。我们表明,如果测量矩阵满足等轴测常数的RIP,则gOMP会在迭代内对噪声测量的所有稀疏信号进行稳定的重构,其中噪声矢量和gOMP每次迭代中选择的索引数算法。对于高斯随机量测,我们的结果表明所需量测的数量实质上是,这是对现有结果的重大改进,尤其是对于大型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号