首页> 外文期刊>IEEE Transactions on Signal Processing >Exact Recovery of Sparse Signals Using Orthogonal Matching Pursuit: How Many Iterations Do We Need?
【24h】

Exact Recovery of Sparse Signals Using Orthogonal Matching Pursuit: How Many Iterations Do We Need?

机译:使用正交匹配追踪精确恢复稀疏信号:我们需要多少次迭代?

获取原文
获取原文并翻译 | 示例

摘要

Orthogonal matching pursuit (OMP) is a greedy algorithm widely used for the recovery of sparse signals from compressed measurements. In this paper, we analyze the number of iterations required for the OMP algorithm to perform exact recovery of sparse signals. Our analysis shows that OMP can accurately recover all $K$-sparse signals within $lceil 2.8 ; K rceil$ iterations when the measurement matrix satisfies a restricted isometry property (RIP). Our result improves upon the recent result of Zhang and also bridges the gap between Zhang's result and the fundamental limit of OMP at which exact recovery of $K$-sparse signals cannot be uniformly guaranteed.
机译:正交匹配追踪(OMP)是一种贪婪算法,广泛用于从压缩测量中恢复稀疏信号。在本文中,我们分析了OMP算法执行稀疏信号的精确恢复所需的迭代次数。我们的分析表明,OMP可以准确恢复$ lceil 2.8内的所有$ K $-稀疏信号;当测量矩阵满足受限等轴测特性(RIP)时,K rceil $次迭代。我们的结果改进了Zhang的最新结果,并且弥合了Zhang的结果与OMP基本极限之间的差距,在该极限下,不能统一保证$ K $稀疏信号的精确恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号