首页> 外文期刊>IEEE Transactions on Signal Processing >Block- and Rank-Sparse Recovery for Direction Finding in Partly Calibrated Arrays
【24h】

Block- and Rank-Sparse Recovery for Direction Finding in Partly Calibrated Arrays

机译:块和秩稀疏恢复,以在部分校准的阵列中找到方向

获取原文
获取原文并翻译 | 示例

摘要

A sparse recovery approach for direction finding in partly calibrated arrays composed of subarrays with unknown displacements is introduced. The proposed method is based on mixed nuclear norm and ℓ1 norm minimization and exploits block-sparsity and low-rank structure in the signal model. For efficient implementation a compact equivalent problem reformulation is presented. The new technique is applicable to subarrays of arbitrary topologies and grid-based sampling of the subarray manifolds. In the special case of subarrays with a common baseline our new technique admits extension to a gridless implementation. As shown by simulations, our new blockand rank-sparse direction finding technique for partly calibrated arrays outperforms the state of the art method RARE in difficult scenarios of low sample numbers, low signal-to-noise ratio, or correlated signals.
机译:介绍了一种稀疏恢复方法,该方法可在由部分位移未知的子阵列组成的部分校准的阵列中找到方向。该方法基于混合核规范和ℓ 1 规范最小化,并在信号模型中利用了块稀疏性和低秩结构。为了有效实施,提出了紧凑的等效问题重新表述。该新技术适用于任意拓扑的子阵列以及子阵列流形的基于网格的采样。在具有共同基线的子数组的特殊情况下,我们的新技术允许扩展到无网格实现。如仿真所示,在低样本数,低信噪比或相关信号的困难情况下,用于部分校准阵列的新的块级秩稀疏方向发现技术优于最新的方法RARE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号