首页> 外文期刊>IEEE Transactions on Robotics >A Randomized Kinodynamic Planner for Closed-Chain Robotic Systems
【24h】

A Randomized Kinodynamic Planner for Closed-Chain Robotic Systems

机译:用于闭链机器人系统的随机性动力学规划器

获取原文
获取原文并翻译 | 示例

摘要

Kinodynamic rapidly-exploring random tree (RRT) planners are effective tools for finding feasible trajectories in many classes of robotic systems. However, they are hard to apply to systems with closed-kinematic chains, like parallel robots, collaborative arms manipulating an object, or legged robots keeping their feet in contact with the environment. The state space of such systems is an implicitly-defined manifold that complicates the design of the sampling and steering procedures, and leads to trajectories that drift from the manifold if standard integration methods are used. To address these issues, this article presents a kinodynamic RRT planner that constructs an atlas of the state space incrementally, and uses this atlas to generate random states, and to dynamically steer the system toward such states. The steering method exploits the atlas charts to compute locally optimal controls based on linear quadratic regulators. The atlas also allows the integration of the equations of motion using local coordinates, which eliminates any drift from the state space manifold and results in accurate trajectories. To the best of our knowledge, this is the first kinodynamic planner that explicitly takes closed kinematic chains into account. In this article, we illustrate the planner performance in significantly complex tasks involving planar and spatial robots that have to lift or throw a load using torque-limited actuators.
机译:Kinodynamic迅速探索随机树(RRT)规划人员是在许多机器人系统中寻找可行轨迹的有效工具。然而,它们很难应用于具有封闭运动链的系统,如平行机器人,操纵物体的协作臂,或者有腿的机器人保持其脚与环境接触。这种系统的状态空间是一种隐式定义的歧管,其使采样和转向程序的设计复杂化,并且如果使用标准集成方法,则导致从歧管漂移的轨迹。为了解决这些问题,本文介绍了一个Kinodynamic RRT规划器,它逐步构建状态空间的图图,并使用此Atlas生成随机状态,并动态转向该系统的系统。转向方法利用ATLAS图表基于线性二次调节器计算局部最佳控制。 Atlas还允许使用局部坐标的运动方程集成,这消除了来自状态空间歧管的任何漂移,并导致精确的轨迹。据我们所知,这是第一个Kinodynamic计划者,明确地考虑了封闭的运动链。在本文中,我们说明了涉及使用扭矩限制致动器的平面和空间机器人的显着复杂任务的计划者性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号